
 © Introspect Technology, 2023

Published in Canada on April 28, 2023

EN-G040E-E-23118

Introduction

Requirements

Installation

Startup & Form Factor Selection

Test Window Overview

Python Commands and Test Procedure Editor

1. Basic Python .. 15

2. Accessing Components .. 16

3. Using Utility Functions .. 16

4. Defining Functions ... 17

5. Looping ... 18

6. Using the Standard Library ... 18

7. Using Numerical Packages (Numpy and Scipy) .. 18

8. Integrating your own Python Scripts .. 19

Saving and Loading Tests

Structure of a Test Folder .. 22

Utility Components

Utility Components .. 24

Devices Components ... 26

Updating the Firmware

Updating the License

Customization and Preferences

Introspect Documents Subfolder

Components ... 28

Config .. 29

Images ... 29

Logs .. 29

Notes ... 29

PythonCode .. 30

Scripts .. 30

Tests ... 30

Troubleshooting

Licensing .. 31

Application Startup .. 31

Failure to Connect .. 31

Pinetree is an ultra-capable development environment that allows you to easily develop and verify all

your high-speed digital and mixed-signal algorithms. Designed for users with widely varying

backgrounds and expertise, it offers an extremely intuitive interface simultaneously with infinitely

extensible capability.

This document introduces the architecture of the software and its main features. It also provides a

detailed description of its key components and presents useful programming and automation tips.

Wherever appropriate, simple step-by-step procedures are presented to help you get up and running

quickly with the software.

Previously known as the Introspect ESP Software, Pinetree is the software that powers Introspect’s tools

since the company’s inception. With its most recent release comes a brand-new user interface, but with

the same powerful capabilities. Pinetree was the project’s original codename during the project’s initial

development stages. Today, it boasts its original name and reflects a pillar or strength, ingenuity, and

creativity.

Pinetree is built on the Python programming language, and it relies on four basic concepts:

• Components

• Tests

• Results

• Form Factors

The software requirements are:

• FTB2XX drivers

• FTD3 drivers (for devices with USB3)

• .NET Desktop Runtime 7.0+

• VS2017 Redistributable

• Running as Administrator

You must be logged in as an administrator when installing Pinetree and the FTDI drivers. If you aren't an

administrator, you are likely to get install errors due to lack of permission to write files in the "system"

area.

• FTDI Driver Installation

Pinetree communicates with the Introspect hardware/firmware via the FTDI device (connected via USB).

Usually the installation of the FTDI drivers is handled automatically by Microsoft Windows when you first

connect a USB cable to the Introspect hardware. If your computer is not connected to the Internet at

that time, and you don't already have the FTDI "FTD2XX" and "FTD3XX" drivers installed on your

computer, you will need to download them from the FTDI web site and install them using the FTDI-

supplied installer.

• http://www.ftdichip.com/Drivers/D2XX.htm

• http://www.ftdichip.com/Drivers/D3XX.htm

Use the link "setup executable" on the right-hand side of the FTDI web page. Note that you must have

an FTDI device plugged into your computer (via USB) for Windows to complete the install of the drivers.

If you don't have access to the Introspect hardware, you will get an error message about the FTDI DLL

not being installed. Ignore this if you do not intend to connect to the hardware.

After installing the FTDI drivers, we recommend using the "usbview" utility program linked to on the

following FTDI page: http://www.ftdichip.com/Resources/Utilities.htm to check that your computer can

"see" the FTDI device over USB.

http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Drivers/D3XX.htm
http://www.ftdichip.com/Drivers/D3XX.htm
http://www.ftdichip.com/Resources/Utilities.htm

1) Pinetree uses Microsoft's .NET Desktop Runtime 7.0. You must have version 7.0 or later installed run

Pinetree. If you don't have it installed, you can download and install the runtime manually from the link

below:

• https://dotnet.microsoft.com/en-us/download/dotnet/6.0

2) Pinetree relies on the Visual C++ Redistributable (2017) library. You can download it from one of the

links below:

• https://support.microsoft.com/en-ca/help/2977003/the-latest-supported-visual-c-downloads

• https://visualstudio.microsoft.com/downloads/

Pinetree requires the 64-bit (x64) version of the redistributable.

Execute the IntrospectESP_Installer.exe and follow the instructions on screen. The software can be

installed on any hard drive on your computer. Note that it is not recommended to install it on a network

drive as you may encounter issues with .NET 7 applications.

The installer will prompt you to select how the license should be set up on your computer. Most users

will be provided with an Activation Key: select the Activation Key option to complete the installation.

You will be required to provide the activation key the first time you start Pinetree. If you do not have

internet access on your computer, select the “Request a New License” option, and follow the instructions

on screen.

https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://support.microsoft.com/en-ca/help/2977003/the-latest-supported-visual-c-downloads
https://visualstudio.microsoft.com/downloads/

When you install the Pinetree GUI for the first time, in the "Software Licensing" step, you may select the

option "Use Activation Key”. Then, once you launch the GUI, you will be asked to enter the activation key

where you can use the one provided to you.

Figure 1: Software licensing step

If you have a previous version of the software on your PC, you may select "Use Existing License" and

browse to the Licenses folder of your previous software installation.

You might need to get a new license with the software already installed. To obtain one, follow the steps

below:

• Using the terminal or the command prompt, change the working directory to the Introspect's

Python folder: cd <your_install_path>\IntrospectESP_<version>\Python

• Run the printInfoForLicense.py script using the command:

 python printInfoForLicense.py

This script will get the hardware information of the machine you are running the software on. Please

send us the information that the script generates using the Introspect Help Center.

The above steps result in the receipt of a license file that you must store in the Licenses folder of the

Pinetree installation.

A hardware license is distributed as a jam file: "license_<serial number>.jam". This license is usually

programmed by Introspect, and you should not have to program it unless you must upgrade your

device. For example, if you originally purchased a D-PHY generator and later purchased an upgrade to

C-PHY, you will receive a new jam file to enable the C-PHY license.

Note that your PC must be connected to the Internet to enable the activation key. If you don't have

access to the Internet or if you are behind a firewall, please select the option "Get a New License"

instead.

To request an activation key, please create a ticket using the Introspect Help Center which is available

on the support page of the Introspect Technology website: Support | Introspect Technology

https://introspect.ca/support/

To program the jam file into the unit, do the following:

• Open the GUI.

• Got to Tools → License Updater

• Press start update.

• Power cycle the unit when it's finished.

The hardware license is specific to the test instrument being used and is stored inside the instrument.

For more information on licensing, refer to the Knowledgebase article: Understanding Software and

Hardware Licenses

When Pinetree is installed for the first time, it automatically creates an “Introspect” folder in the

Windows “Documents” directory. This folder is where Tests, Components, and Results are stored. It also

contains several sub-folders for storing custom configuration data, image files, and so on. A detailed

description of this Introspect folder is described in a later section of this document. For now, suffice it to

say that this folder – and its contents – is always preserved when different versions of Pinetree are

installed on the same PC.

Upon starting the application, you will be greeted by a welcome screen, as seen on Figure 2. Select the

Form Factor you wish you wish to use and click the Next button. You can either select it from the

dropdown menu or type it in the Search area.

For this document, we will use the SV5C_16C12G form factor. Once selected, you will be prompted with

a test selection screen: select “Create a new test” and click Next.

https://introspect.atlassian.net/wiki/spaces/KB/pages/916291585/Understanding+Software+and+Hardware+Licenses
https://introspect.atlassian.net/wiki/spaces/KB/pages/916291585/Understanding+Software+and+Hardware+Licenses

A Form Factor is a software configuration that corresponds to a particular Introspect product. The

correct Form Factor to choose for your product should be communicated to you by your sales

representative.

Each Introspect Technology product can be driven from Pinetree by using the Form Factor associated

with said product. If a user has many products, they can drive them via separate software instances.

However, it is difficult to coordinate two separate software instances together for automation purposes.

Combined Form Factors allows users to drive multiple Introspect products from the same software,

making it easy to coordinate two or more products together. They enable the creation of sophisticated

test benches by coordinating different products to work together.

This feature is available on all platforms Pinetree is supported on (Windows, Linux, macOs).

Figure 2: Pinetree welcome screen

The test window is Pinetree’s main window. It shows the current software state and exposes tools the

user to modify it. The major areas and buttons of the main window are listed in Figure 3.

• Create components as needed

• Edit the properties of each components

• Edit the test procedure

• Run the procedure. Progress or errors will be displayed in the application log.

• (optional) View the results created by the procedure

Figure 3: Main test window

1. Create new component tray (double click or drag in 2.)

2. Component list

3. Component properties panel

4. Procedure python code editor

5. Run button: start the current test

6. Result tray

7. Firmware updater

8. Link to form factor documentation (opens in web browser)

9. Application log

A component encapsulates a single feature or concept of the Form Factor. Most components interact

with the connected Introspect hardware in some way. Components in the “Utility” category do not

directly interact with hardware but are instead tools for test organisation or automation.

The “New component tray” (area 1 of Figure 3) lists the available component classes for this test. You

can create new component instances by double-clicking on the desired component. This will add a new

component to the “Component list” (area 2 of figure 3).

You can have multiple instances of the same component class in your test.

Most components are used by the test procedure via either a setup() or run() method. Generally, run()

methods produce a result, whereas setup() methods do not. These methods are added automatically to

the test procedure upon creating a new component.

The procedure is a full-fledged Python environment. From the procedure code, you can access, modify,

and execute methods on the components active in the test. In addition, anything possible with a

traditional Python environment is possible in the test procedure.

The run button on the top-right section executes the procedure code. At this point, you should make

sure that your Introspect hardware is correctly connected to your computer via USB cable and powered

on. The procedure is the sequence of events to be executed once the test has run.

The test run starts once the run button is pressed. It first connects to the Introspect hardware (if needed),

then executes the procedure Python code. As the run progresses, messages will appear in the log area: if

there is an error in your procedure, or an invalid setting in one of the components, a red error message

will be issued, and will require a correction from the user.

Once completed, results will appear in the result tray (if applicable).

Certain components return a result after their execution completes. These components usually have a

run() method associated with them. Most results, when double-clicked, are displayed in a viewer panel

that shows all the relevant output of the component’s run.

You may open any documentation by following the steps below:

1. From the Components tab, right click on one of the components listed. A short list of options will

appear.

2. Select Help. This will open a new web browser with the component documentation.

3. Back in Pinetree, click the chain icon next to the selected attribute's name, at the bottom. This will

open component documentation for this attribute.

The main window of the application is the test window – a window that shows the Components for a

Test and any Logs or Results from running that Test. Since you previously chose to create a new Test,

you will be presented with an empty Test window with default Components, as shown in Error!

Reference source not found..

This workflow is covered in the subsections below. Additionally, an example test workflow is shown in

the next section of this document.

There is no need to press Enter after changing a property value – the change will take effect as soon

as keyboard focus leaves that field. For example, you can change a property value and then

immediately click the “Run” button.

The “Test Procedure” is the Python code that executes when a Test is run. Most Components have either

a “run” method or a “setup” method, and a call to the appropriate method is entered automatically into

the Test Procedure when you add a new Component instance to the Test.

You can add in calls to other Component methods, and comment-out or entirely remove any code that

you do not want to run. You can also add in any arbitrary Python code that you want to run in the Test

Procedure.

Usually, the Test Procedure is edited to reorder the calls to the Component methods so that operations

happen in the right order according to your test plan. For example, if you are using the IESP’s TX

channels to output patterns to your device under test (DUT) and an EyeScan to analyze the Result, you

need to call the TxChannelList’s “setup” method before calling the “run” method of the EyeScan.

The rest of this section gives examples of more advanced features that the Python language allows you

to do. You can skip it if this is the first time you are reading this manual.

To add a comment to the Test Procedure, you can use the Python comment character ‘#’ – this makes

Python ignore anything after that character on that line. This is often used to comment out lines of code

that you do not want executed but want to keep for possible future use. It is also used to document your

code for ease of readability.

It is also possible to comment-out multiple lines of code by using Python’s triple quoting mechanism. If

you have three quote marks next to each other, Python will ignore everything after that until the next

occurrence of three quote marks in a row. You can use either the single quote character (‘) or the double

quote character (“) but you cannot mix and match.

globalClockConfig.setup # This is a comment

"""

This whole section is commented-out

txChannelList1.setup()

bertScan1.setup()

eyeScan1.run()

"""

txChannelList2.setup()

bertScan1.run()

eyeScan1.run()

You can use the Python “print” command to output messages to the Test log upon running the Test. For

example:

To print the value of some variables along with your message, use f-strings, like so:

You can assign values to variables of your choosing and then use those variables later in the Test

Procedure. Many of the Component methods return a value, and it is often useful to assign this return

value to a variable. For example, the “run” method of BertScan returns a Result class called

BertScanResult, which contains many dictionaries and accessor functions. This Result class is not usually

used in the code since its contents can be viewed via the BertScan viewer. However, during automation,

you might want to do some specialized analysis on the data – something like the following function call

“analyzeBertData”:

For more information about the data returned from the Components “run” methods, please refer to the

documentation available in the “Help” menu of the main software window.

print("This message will appear in the test log...")

print(f"Iteration: {i} Value: {floatValue}")

myResult = bertScan1.run()

analyzeBertData(myResult)

You can change properties of a Component programmatically by assigning to the properties and then

calling either the “setup” or “update” method on the Component. The “setup” method sends all the

Component property values to the Introspect hardware, while the “update” method only sends the

values that have changed. For example:

This allows users to change Components properties on the fly during a Test run, without having to

change the properties manually from the Params tab.

To access the TestProcedure Api, click on the documentation tab at the bottom left of the

screen. A browser will open with the various procedures.

A simple example is sleepMillis: Sleep for the specified number of milliseconds.

Parameters:

• numMillisec – a non-negative integer number of milliseconds specifying the total time to sleep

• checkIntervalSec – a floating-point number of seconds specifying the interval between checks on

the status of the current Test run. ‘checkIntervalSec’ defaults to 5 seconds. This means that by

default, there will be a check on the status of the current Test run at the beginning and then every

5 seconds after that during the sleep time (if ‘numMillisec’ is greater than 5000).

Example:

>>>sleepMillis(1000)

txChannelList1.voltageSwings = [800, 600]

txChannelList1.preEmphasis = [txPreEmphasis1]

txChannelList1.update()

Within most Introspect Form Factors, the SvtFunction Component can be added to a Test Procedure to

encapsulate sections of code. Functions can be edited in their respective tab on the bottom view of the

main GUI window, alongside the “Test Procedure” tab. You can define a function, “function1”, as shown

below in Figure.

You can then call the function in your Test Procedure like so:

Here is a more interesting example – a simple version of what is done in the IdentifyPattern Component:

function1(1,2,3)

Figure 5: Simple SvtFunction declaration

Figure 4: More advanced SvtFunction Declaration

You can loop, or iterate, over sections of code by using the Python looping constructs “for” or “while”.

For example:

Pinetree runs a fully-fledged Python interpreter. You not only have access to built-ins (such a list, tuple,

etc), but also to all of python’s standard library. These can be accessed the traditional way, using import

statements:

Pinetree’s built-in interpreter comes with both Numpy and Scipy already installed. You can access them

via imports:

for i in range(0, 3): # i will be 0, 1, 2

 print (f"{i}) Hello")

myPatterns = [PAT_DIV20, PAT_K28_5, userPattern1]

for i in range(0, 3):

 pattern = myPatterns[i]

 print (f"Using pattern {pattern.name}")

 rxChannelList1.expectedPatterns = [pattern]

 rxChannelList1.update()

 bertScan1.run()

import os

folderPath = "path/to/folder"

fileName = "data.bin"

filePath = os.path.join(fileName)

with open(filePath, 'rb') as fh:

 dataBytes = fh.read()

In the above example, the implementation of the function “analyzeBertData” might have been declared

in an external Python code file. Instead of copy/pasting this code into your Test Procedure, you can

make it available in Pinetree in two different ways:

When a “.py” file is added to the “Params” subfolder of a Test, an instance of the PythonModule

Component is automatically created with the same name as the file. By default, using the “run” method

of that Component will import all functions and classes from the Python code file. This allows the user to

call those functions and classes within Pinetree without having to import any extra file

By default, the Python search path of Pinetree will look for any “.py” files located in the

“Documents\Introspect\PythonCode” folder. By using the Python “import” command in your Test

Procedure, you can access the functions and classes declared in those files inside Pinetree. For example,

if there is a “myPythonStuff.py” file in the “Documents\Introspect\PythonCode” folder, you can import all

its functions and classes by using:

This is especially useful when you want to use the same Python code file in multiple Tests without having

to store multiple copies of the file on your computer.

You can pause the execution of the Test Procedure for a specified number of milliseconds by using the

“sleepMillis” function – for example:

import numpy as np

Create an array of 0xAA bytes

data = np.ones(16, dtype=np.uint8)

data *= 0xAA

from myPythonStuff import *

sleepMillis(1000) # One second delay

You can pause the execution of the Test Procedure until something else is ready via the

“waitForOkDialog” function – for example:

This will prompt the user with a dialog box and an “OK” button. The Test Procedure will be paused until

the button is clicked.

You can run a shell script or other Windows executables via the “runShellScript” function. This could be

used to control other test equipment or to do data analysis. For example:

You can send an email message at any point in the Test Procedure by using the “send” method of the

EmailMessage Component. For example:

Usually, you control the Introspect hardware via the facilities provided by the Components themselves.

But lower-level access is available via the “iesp” object that you can obtain by calling “getIespInstance()”

- for example:

waitForOkDialog("Click OK when the DUT is ready")

runShellScript("perl myScript.pl")

emailMessage1.send("Partial Result", "value: %.3f" %value)

Most cellular phone companies provide a way to send text messages (SMS) to a phone via email (see

for example: http://www.makeuseof.com/tag/email-to-sms/) and thus the EmailMessage component

can be used to send text messages to your phone.

http://www.makeuseof.com/tag/email-to-sms/

As was mentioned previously, an IESP Form Factor is a class that provides information about the

hardware configuration and that also provides methods for hardware-dependent

functionality. There is usually only one instance of this class, obtained using the above call to

getIespInstance().

A more sophisticated example of using low-level access is if a user wants to display the temperature of

the Introspect device during their test. In this case, they could add the following lines to their Test

Procedure:

For more details on the functions mentioned see the documentation in the files “svt.html” and

“iesp.html” (in the folder “Doc”). To learn more about Python, see the documentation at Welcome to

Python.org

iesp = getIespInstance()

iesp.checkHardwareStatus()

iesp = getIespInstance()

moduleTemperatures = iesp.getModuleTemperatures()

print ("Module Temperatures: %s" %moduleTemperatures)

https://www.python.org/
https://www.python.org/

Pinetree is a document-based application like Microsoft Word. Each Test window is a separate

“document” and can be saved and loaded independently. You can have several Test windows open at

the same time.

• When you create a new Test, the associated parameters and data are either kept in RAM or in a

temporary folder on your hard disk. This allows you to do quick “one-off” experiments without

being bothered about file names or folder paths.

• Just as you would on a Word document, save your test by clicking on: File and Save As, followed

by naming the test to your choice. Or, press on Ctrl + S on your keyboard for a shortcut. We

recommend saving your tests and associated result data for later use.

• To load a previously saved Test, click on File and Open.

A Test folder always has three sub-folders: “Params”, “Results” and “Logs”.

• Params folder usually only has one file: “testProcedure.py”. This file contains the Python code to

create the Components of the Test with their respective properties, followed by the code of the

Test Procedure. If you are careful to get the syntax correct, you can manually edit the

“textProcedure.py” file in a text editor like “Notepad++” or “Komodo”.

• Results folder is initially empty but each time you run the Test, a new sub-folder is created there

to hold the results of the run. By default, these folders are named according to the date and time

the Test was started. Each run Results sub-folder contains:

o A snapshot of the “testProcedure.py” file – this file contains the state of the Test

parameters used to generate the associated results data. It might be useful if you have

changed the Test parameters after that run and want to revert to what it was at that time.

You could revert by manually copying the “testProcedure.py” file from the run Results

folder to the “Params” folder.

o One or more Component Results sub-folders, each of which contains:

▪ A file “.resultInfo.csv” with info about the Component Results. This file is normally

hidden since its name starts with a dot

▪ One or more CSV files with the raw data from the Component’s ‘run’ method.

Usually there is one file per channel and the channel number is part of the

filename

• Logs: This folder contains the Test log files with the messages that appear in the Log tab. Just like

the Results sub-folders, there is one log file for each session, named with the date and time of the

start of the session. If you are short of disk space, you can remove old log files and any run Results

that you no longer need.

Pinetree loads Components from the “SvtPython” folder or from the Introspect Documents Folder Path.

There is a rich set of built-in Components, and these are categorized based on their usage model and

functionality. The “general” category holds the general-purpose Components – these Components are

often used in the implementation of other Components. Then there are other categories which are: “ui”,

“utility”, “advanced”, and “devices”.

Each Component has several properties and methods. The Component properties are shown in the

Properties panel of the Test window.

Most basic Components have a “setup” method and an “update” method. The “setup” method sends all

the Component property values to the Introspect hardware or to any connected hardware. The “update”

method sends only those property values that have changed since the last “setup” or “update”, saving

time when executing the Test and preserving hardware state during complex operational sequences.

Components that produce a Result typically have a “run” method. The “run" method also generally

returns a value that can be assigned to a Python object. This allows the Result values to be accessed

programmatically, offering more flexibility to the user. The Results can also be automatically written to a

file, allowing the user to display them using the different Result Viewers of Pinetree. This means that

users can execute, save, and display measurements like bathtub and eye diagrams with a single line of

code.

Often, Components that perform a measurement are linked to other Components. In that case, the “run”

method of the measurement Component will often call the “setup” method of the linked Components.

For example, a BertScan Component’s “run” method will call the “setup” method of the linked

rxchannelList Component.

A list of all the available Components, along with full documentation on their respective properties and

methods can be found under “Component Classes” in the “Help” menu of the main software window.

You can also find documentation for a specific Component by right clicking on it in the Components List

view and selecting “Help” from the contextual menu. Additional documentation can also be found in the

software’s installation directory under the “Doc” subfolder.

Below is a short list of the most common Components used in Pinetree. Before using any of these

Components, it is highly recommended to quickly read the documentation about them.

Based on concepts from unit test software testing frameworks, the TestCase Component is a very

powerful tool for running a sequence of operations using custom Python code that you provide to it.

The Component provides utilities to define pass/fail criteria for a specific test case that you want to

cover. It also offers sophisticated crash-handling capabilities, allowing you trap exceptions and to log

them without halting the rest of your Test procedure.

A TestCaseSuite is a collection of TestCase instances. It offers methods for running test cases and for

setting up global initialization parameters before running any test case. Additionally, it provides an

optional graphical interface where operators can click on tests and observe pass/fail logs associated with

such tests.

Please refer to the online help and tutorials for further details on the TestCaseSuite and some of its

applications.

The Components’ Python class names usually start with “Svt”, but this prefix is omitted in the

Component class names listed in the Component List.

This Component provides the ability to create a user-defined Component from a Test. When you save a

Test that includes an instance of this Component, a file of Python code is generated in the

"TestAsComponent" sub-folder of the Test folder. This generated code defines a new Component class

whose 'run' method performs the operations that are done by the Test Procedure. If you specify a

DataRecord Component in the same Test entity, the fields of that DataRecord will become the properties

of the new Component.

You should "hook up" the fields of the DataRecord to the properties of the Components you want them

to control by adding assignment statements in the Test Procedure. After you save the Test that includes

an instance of this Component, the newly generated Component will show up in the Add Component

dialog in the GUI so you can create instances of this new Component in other Test windows and try out

the new Component. When you have it working properly, you can copy the generated ".py" file to the

"Introspect/Components" folder under the Introspect Documents Subfolder for future use by yourself or

other users. The Introspect Documents Subfolder is described in a later section of this manual.

This Component provides the ability to create a standalone Python script from a Test. When you save a

Test that includes an instance of this class, a Python script is generated in the "TestAsPythonScript" sub-

folder of the Test folder. This script performs the operations that are done by the Test Procedure, but it

can be called from any external Python environment.

This Component provides a facility to measure execution times of Components or functions.

This Component provides the basic functionality needed to control a third-party instrument that is

compatible with the VISA language. It does this by deploying the pyVisa libraries from within Python.

Note that all these libraries are imported automatically, so you only have to focus on the functions that

you want to perform. For example, to connect to a VISA instrument, you call the method “connect()”

from this Component class.

This Component provides functionality to interface with Lauterbach's Trace32 software. To communicate

with a Trace32 application, it is essential that the 'packetLen' and 'port' match the values in the

config.t32 used by the target application.

To update the firmware, click on the icon above the documentation icon, in the bottom left corner of

your screen (a). Alternatively, click on Tools -> Firmware Updater in the window top menu.

In the pop up window (b), click on “Start Firmware Update” after selecting the desired firmware file.

 (a)

 (b)

To update the license, click on Tools -> Firmware Updater in the window top menu.

In the pop up window, click on “Start License Update” after selecting the desired license file

Figure 6: (a) Firmware icon (b) Pop up window to start the firmware update

When Pinetree starts up, it reads the file “preferences.ini” located in the “GUI” subfolder of the software

installation directory. This file contains preferences that can be modified by the user. Here are some of

the more commonly changed preferences:

formfactor: This specifies which Introspect hardware form factor will be shown first in the welcome

screen when launching the software. For example, to display the SV1C-12 first, you would set this

preference to “SV1C_8C12G” (without the quotes). The default value for this preference is

MOST_RECENT.

testDefaultPath: This specifies the default save and load locations for all Tests. By default, the path

is “Documents\Introspect\Tests”. To change it, uncomment the line by removing the ‘;’ at the start of it.

Please refer to the Introspect Documents Subfolder section for further information on recommended

Test paths writeMessagesToLogFile: When set to true, the messages that appear in the Log tab will be

written to a file under the Test folder. This preference defaults to true.

For more details on all other preferences, please refer to the comments in “preferences.ini”.

When Pinetree is installed, it automatically creates an “Introspect” folder in the windows “Documents”

directory. It contains multiple sub-folders that are shared between all installations of Pinetree, regardless

of the version number. Below is a description of each of the sub-folders and their use within Pinetree.

The “Components” folder contains user defined Components. You can use the “TestAsComponent”

Component in Pinetree to easily create custom Components.

The “Config” folder can be used to add an initialization file that applies to all installations of the Pinetree.

If you modified your “preferences.ini” file under “[Introspect ESP Software Installation Directory]\GUI” as

shown in the previous section, and you wish to apply it to all installations of the software on your

computer, you can simply copy and paste it into the “Documents\Introspect\Config” directory.

Additionally, the Config folder is where custom form factors are stored. A custom form factor is an

advanced solution for creating multi-instrument environments and controlling them from within a single

instance of Pinetree. For example, you can create a custom form factor consisting of two SV5C-12 units

connected together. This allows you to create very wide bus applications with a seamless software

interface.

The “Images” folder is where users can save image files to make them accessible from within Pinetree.

This allows users to easily send specific image files to their DUT when using Introspect’s MIPI C-PHY or

D-PHY generator devices.

The “Logs” folder is where the generic Pinetree logs are saved. For example, this is the location where

the Firmware Updater logs are saved. This folder does not contain the log files from Test runs, it only

concerns the execution of the GUI itself.

The “Notes” folder is where the Scrapbook entries are saved. This allows your field notes to be accessible

by all the installations of Pinetree.

The “PythonCode” folder is where you can save you external Python code files you want to use inside

Pinetree. By saving a “.py” file to this folder, you can use the Python “import” command to use any of its

declared function or class from within your Test. For more details on how to use your own Python code

files from within Pinetree, please refer to section on Importing Other Python Code of this document.

The “Scripts” folder is where users can save Python scripts to be executed on raw result data. This means

that you can process the raw data files produced by Pinetree to fit your exact testing needs. For more

details on how to declare script files to be used inside Pinetree, please refer to the html help

documentation.

The “Tests” folder is the default location where all Tests created with Pinetree are saved. When clicking

“Save” from the “File” menu in the software, this is where your Test Procedure, Logs and Results files are

saved.

For detailed assistance on any issues related to Pinetree, please log-in to the Introspect Technology

Service Desk and review our Knowledgebase or open a request. In this section, we provide very basic

information on common troubleshooting topics.

Pinetree is governed by a node-locked license. New installations are delivered with an activation code

that automatically generates your license files. If you do not have a network connection on the PC where

the software is being installed, the activation code might not work. In this case, you will receive a license

file that you have to place under the “[install path]\Licenses” folder of your installation.

If you install more than one version of Pinetree, simply copy your original license from the “[install

path]\Licenses” to the corresponding folder in the new installation path.

If the software fails to start, it is likely caused by the absence of the required software libraries. See the

Requirements section for the list of necessary libraries.

Check the messages in the Log tab. The 3 most common errors encountered when failing to connect are:

• No FTDI devices found: the Introspect hardware is either disconnected or unpowered.

• Command processor not responding: Introspect hardware is hung and needs to be power-cycled.

• A Python exception: most likely caused by having selected the wrong form factor for the

currently loaded firmware. Either restart Pinetree with the correct form factor, or update your

device to the correct firmware.

https://introspect.atlassian.net/servicedesk/customer/portal/

 © Introspect Technology, 2023

Published in Canada on April 28, 2023

EN-G040E-E-23118

1.0 Document Release January 28, 2013

2.0
Major revision and updated

document template
December 9, 2019

2.1
Major revision to reflect the

new GUI
April 28, 2023

The information in this document is subject to change without notice and should not be construed as a

commitment by Introspect Technology. While reasonable precautions have been taken, Introspect

Technology assumes no responsibility for any errors that may appear in this document.

